Sections Filtres & Amp

- Filtres
- Section Amp

Filtres


Dans chaque Machine, la source sonore est toujours acheminée à travers une section de Filtre similaire, disponible sur l'onglet 3.

Chaque section de Filtre passe ensuite par une **section Amp** avant d'aller au **Mixer**.

La section de Filtre est toujours sur l'onglet 3 dans chaque Machine.

Cette onglet de filtre a 3 pages contenant différents contrôles. Lorsqu'un en-tête d'onglet affiche de petites icônes de barres, cliquez sur son bouton correspondant en dessous pour naviguer entre ses pages.

Écran principal de la section de Filtre

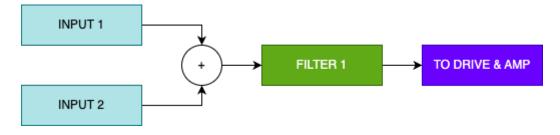
Page 1:

Filter 1 Frequency	Filter 1 Resonance	(Filter Morph) -ou- (Filter Gain)	Filter 1 Type
Contrôle la fréquence de coupure du filtre	Contrôle le montant de résonance du filtre	Morph entre les types de filtres, de Low-Pass à Notch à High-pass. Ce paramètre est uniquement disponible lorsque le type de filtre est réglé sur SVF pour State Variable Filter. -ou- Régler le gain de l'EQ. Ce paramètre est uniquement disponible lorsque le type de filtre est réglé sur Bell EQ.	Sélectionnez un type de filtre et une pente. Lisez la référence des types de filtres ci-dessous pour plus de détails sur chaque filtre disponible. Ce paramètre ne peut pas être modulé.

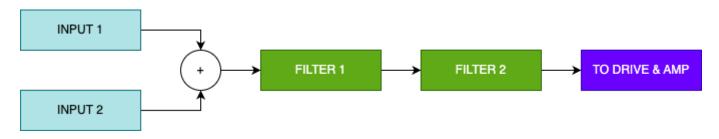
La page 2 est identique à la page 1, mais contrôle le Filtre 2. Pour le déverrouiller, vous devez avoir le Routage sur la page 3 sur un réglage autre que Single.

Référence des types de filtres :

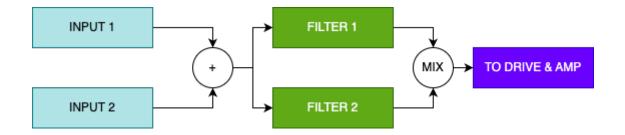
Off	Le filtre est contourné
SVF	Modèle de Filtre à Variable d'État. Utilisez le bouton 3 pour morph entre les types de filtres
K35 LP12 / HP6	Korg 35. Inspiré par le filtre MS-20.
TLD LP 6/12/18/24	Modèle de Filtre à Échelle de Transistor. Inspiré par le filtre Moog classique. Low-Pass avec une sélection de pentes de 6dB/oct à 24/dB/oct
TLD N 12/24	Modèle de Filtre à Échelle de Transistor. Inspiré par le filtre Moog classique. Filtre Notch avec des pentes de 12dB/oct et 24dB/oct
TLD BP 12/24	Modèle de Filtre à Échelle de Transistor. Inspiré par le filtre Moog classique. Passe-bande avec des pentes de 12dB/oct et 24dB/oct
DLD LP24	Modèle de Filtre à Échelle de Diode. Inspiré par le filtre TB- 303. Passe-bas avec une pente raide de 24dB/oct.
COMB +/-	Filtre en peigne pour des sons creux et des effets de wooshes. Avec une rétroaction positive ou négative (résonance)
FORMANT	Filtre formant pour les sons de voyelles. Morph à travers A- E-I-O-U avec le bouton 1.
BELL EQ	Égaliseur simple à 1 bande pour augmenter ou diminuer une région de fréquence sélectionnée. Le bouton 2 ajustera la largeur de la cloche et le bouton 3 réglera le gain

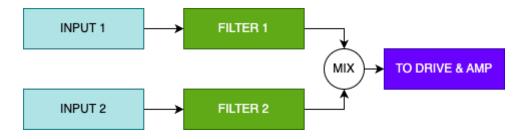

La page 3 permet des options de routage de filtre :

Routing Balance entre le filtre 1 - et 2 -
--


Sélectionnez une configuration de routage pour les filtres.	Contrôle le volume des deux filtres à la sortie. Complètement dans le sens	-	-
Single active uniquement le	des aiguilles d'une montre, seul le filtre 2 sera entendu,		
filtre 1.	et complètement dans le sens inverse, ce sera		
Serial achemine la sortie du	uniquement le filtre 1.		
Filtre 1 vers le Filtre 2.			
Para achemine les deux			
filtres en parallèle			
Split divise les sources			
sonores dans les deux filtres, selon la sélection de			
la Machine.			

Routage de filtre

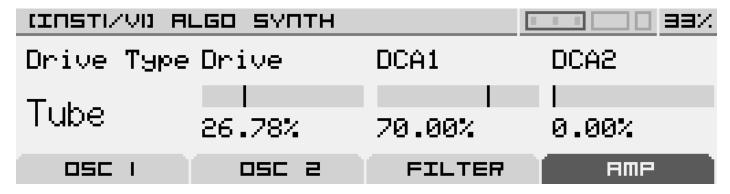

Filtre unique :


Filtres en série :

Filtres en parallèle :

Filtres divisés:

Référence d'entrée (par types de machines)


Machine	Input 1	Input 2
Algo synth	Oscillator 1	Oscillator 2
Wavetable synth	WT Oscillator + Noise	Sub oscillator
Sample player	Sample	Noise
Crossmod	Sortie crossmodulée	-

Section Amp

Dans chaque Machine, la source sonore passe par une section de Filtre et est ensuite acheminée vers la même section Amp.

Chaque section Amp est ensuite acheminée vers le Mixer.

Écran principal de la section Amp

La section Amp est toujours sur l'onglet 4 dans chaque Machine. Cette onglet d'ampli offre des réglages liés à l'amplitude et à la distorsion :

Drive Type	Drive	DCA1	DCA2
Sélectionnez l'un des 29 algorithmes de distorsion. Lisez le tableau ci-dessous pour plus de détails sur chacun d'eux.	Contrôle la quantité de distorsion	Le premier Amplificateur Contrôlé Numériquement. DCA1 et DCA2 sont acheminés en série, avec 1 généralement modulé par la vélocité et 2 modulé par une enveloppe. Mais vous pouvez définir les modulations comme vous le souhaitez.	Le second Amplificateur Contrôlé Numériquement. DCA1 et DCA2 sont acheminés en série, avec 1 généralement modulé par la vélocité et 2 modulé par une enveloppe. Mais vous pouvez définir les modulations comme vous le souhaitez.

Référence des algorithmes de distorsion

Туре	Description
Off	Contourné

Туре	Description
Soft	Applique un effet de saturation douce à un échantillon audio en ajustant l'amplitude de l'échantillon d'entrée en fonction d'un facteur de drive calculé, en utilisant une fonction tangente hyperbolique pour une distorsion non linéaire
Medium	Applique un effet de saturation moyenne à un échantillon audio en échelonnant l'amplitude de l'échantillon d'entrée avec un facteur de drive et en utilisant une fonction arc tangente pour obtenir une distorsion non linéaire plus douce.
Hard	Applique un effet de saturation dure à un échantillon audio en manipulant l'amplitude de l'échantillon avec un facteur de drive et en utilisant une combinaison de fonctions tangente hyperbolique et arc tangente pour une distorsion non linéaire plus agressive.
Diode	Applique une distorsion non linéaire basée sur une diode à un échantillon audio. Il échelonne l'échantillon d'entrée par un facteur de drive, le traite à travers un modèle de diode pour une distorsion non linéaire, puis mélange le signal traité avec le signal original en fonction de la quantité de drive, y compris un facteur de compensation de volume.
Demon	Applique un effet de distorsion à un échantillon audio en échelonnant l'échantillon avec un facteur de drive, en le traitant à travers une fonction sinusoïdale, puis en appliquant une non-linéarité de type diode, en mélangeant le résultat avec l'échantillon original en fonction de la quantité de drive
Soft Fold	Applique une distorsion de pliage douce à un échantillon audio en échelonnant l'échantillon avec un facteur de drive, en le traitant à travers une fonction sinusoïdale pour créer un effet de pliage, et en mélangeant le résultat avec l'échantillon original en fonction de la quantité de drive
Diode Fold	Applique une distorsion de pliage basée sur une diode à un échantillon audio en échelonnant l'échantillon avec un facteur de drive, en le traitant à travers un modèle de diode et une fonction sinusoïdale pour créer un effet de pliage, et en mélangeant le résultat avec l'échantillon original en fonction de la quantité de drive, y compris une compensation de volume
Dual Frequency	Applique une distorsion dépendante de la fréquence à un échantillon audio en divisant l'échantillon en composants de basse et haute fréquence à l'aide de filtres simples, en appliquant différents niveaux de saturation à chaque bande, puis en mélangeant les bandes traitées avec l'échantillon original en fonction de la quantité de drive

Туре	Description
Tube	Simule une distorsion de type tube en échelonnant l'échantillon d'entrée avec un facteur de drive, en appliquant une transformation non linéaire pour imiter l'effet de saturation du tube, et en mélangeant le signal traité avec l'échantillon original en fonction de la quantité de drive
Sigmoid	Applique une distorsion de type tube en utilisant une fonction sigmoïde pour obtenir une saturation non linéaire douce, en échelonnant l'échantillon d'entrée avec un facteur de drive et en mélangeant le signal traité avec l'échantillon original en fonction de la quantité de drive.
Tape Dynamics	Applique une saturation dynamique en utilisant un filtre de pré-accentuation passe-haut, suivi d'une saturation tangente hyperbolique, puis d'un filtre de désaccentuation passe-bas, en mélangeant le signal traité avec l'échantillon original en fonction de la quantité de drive.
Tape Hysteresis	Modélise l'hystérésis de bande en simulant le comportement d'hystérésis magnétique, en ajustant l'échantillon d'entrée en fonction des facteurs de coercivité et de rémanence, et en appliquant une fonction tangente hyperbolique pour saturer la magnétisation, en mélangeant le signal traité avec l'échantillon original en fonction de la quantité de drive.
Tape Curve	Applique un effet de saturation de bande en approximant une courbe de saturation, en échelonnant l'échantillon d'entrée avec un facteur de drive, et en utilisant une transformation non linéaire pour imiter la réponse caractéristique de la saturation de bande
Tape Noise	Simule une saturation de bande avec du bruit ajouté en générant du bruit blanc, en appliquant une saturation tangente hyperbolique au signal bruyant, et en mélangeant le signal traité avec l'échantillon original en fonction de la quantité de drive, y compris une compensation de volume pour des niveaux de drive plus élevés.
Hard Clipping	Applique une distorsion de clipping dur à un échantillon audio en limitant l'amplitude de l'échantillon à un seuil déterminé par le facteur de drive, en normalisant la sortie, et en mélangeant le signal traité avec l'échantillon original en fonction de la quantité de drive
Fuzz	Applique un effet de distorsion fuzz à un échantillon audio en échelonnant l'échantillon avec un facteur de drive, en utilisant une fonction exponentielle pour créer une distorsion non linéaire, et en mélangeant le signal traité avec l'échantillon original en fonction de la quantité de drive

Туре	Description
Chebyshev	Applique une série de polynômes de Chebyshev à un échantillon audio, en utilisant un facteur de drive normalisé pour créer un effet de distorsion harmonique complexe, puis mélange le signal traité avec l'échantillon original en fonction de la quantité de drive
Half Rectifier	Applique un effet de rectification à demi-onde à un échantillon audio en annulant les valeurs négatives, en échelonnant le signal rectifié avec un facteur de drive, et en mélangeant le signal traité avec l'échantillon original en fonction de la quantité de drive
Full Rectifier	Applique un effet de rectification à onde complète à un échantillon audio en prenant la valeur absolue de l'échantillon d'entrée, en l'échelonnant avec un facteur de drive, et en mélangeant le signal traité avec l'échantillon original en fonction de la quantité de drive
Transistor	Simule une saturation de type transistor en échelonnant l'échantillon d'entrée avec un facteur de drive, en appliquant une transformation non linéaire pour imiter les caractéristiques de saturation du transistor, et en mélangeant le signal traité avec l'échantillon original en fonction de la quantité de drive.
Dynamic	Applique un effet de distorsion dynamique à un échantillon audio en échelonnant l'échantillon avec un facteur de drive modulé par l'enveloppe de l'échantillon, en utilisant une fonction tangente hyperbolique pour une distorsion non linéaire, et en mélangeant le signal traité avec l'échantillon original en fonction de la quantité de drive.
Asymmetric	Applique une distorsion de clipping asymétrique à un échantillon audio en limitant l'amplitude de l'échantillon à différents seuils positifs et négatifs en fonction d'un facteur de drive échelonné, en normalisant le signal clippé, et en le mélangeant avec l'échantillon original en fonction de la quantité de drive.
Feedback	Applique un effet de distorsion basé sur le feedback à un échantillon audio en ajoutant un signal de feedback, échelonné par un facteur de gain dérivé du drive, à l'échantillon d'entrée puis en appliquant une fonction tangente hyperbolique pour une distorsion non linéaire, en mettant à jour le feedback avec l'échantillon traité
Zero Crossing	Introduit une distorsion aux passages à zéro en ajoutant un petit pic à l'échantillon audio chaque fois qu'il traverse zéro, avec la magnitude du pic déterminée par un facteur de drive normalisé, et met à jour le dernier échantillon pour de futures comparaisons.

Туре	Description
Bit Reaper	Applique un effet de réduction de bits à un échantillon audio en échelonnant le facteur de drive, en l'utilisant pour déterminer un facteur de décimation, puis en appliquant une réduction de bits à l'échantillon, suivie d'une saturation non linéaire utilisant une fonction tangente hyperbolique, en mélangeant le signal traité avec l'échantillon original en fonction de la quantité de drive
Sample Reaper	Applique un effet de réduction de taux d'échantillonnage en maintenant la valeur du dernier échantillon pour une durée déterminée par le facteur de drive, en mettant à jour l'échantillon uniquement lorsque le compteur dépasse un seuil, et en mélangeant le signal traité avec l'échantillon original en fonction de la quantité de drive
Sample Reduction	Réduit le taux d'échantillonnage d'un signal audio en maintenant la valeur de l'échantillon actuel pour un certain nombre d'itérations déterminé par un facteur de réduction échelonné par le drive, abaissant ainsi effectivement le taux d'échantillonnage perçu
Bitwise	Applique un effet de distorsion bitwise à un échantillon audio en effectuant une opération XOR entre l'échantillon et une valeur échelonnée par le drive, puis en normalisant le résultat et en l'échelonnant en fonction de la quantité de drive
Ring Modulation	Applique un effet de modulation en anneau à un échantillon audio en multipliant l'échantillon avec une onde sinusoïdale à une fréquence déterminée par le facteur de drive, en mettant à jour la phase du signal de modulation pour maintenir une modulation continue